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Abstract. The longitudinal analysis of the brain morphology in Alzh-
eimer’s disease(AD) is fundamental for understanding and quantifying
the dynamics of the pathology. This study provides a new measure of
the brain longitudinal changes based on the Helmholtz decomposition
of deformation fields. We used the scalar pressure map associated to
the irrotational component in order to identify a consistent group-wise
set of areas of maximal volume change. The atrophy was then quanti-
fied in these areas for each subject by the probabilistic integration of
the flux of the longitudinal deformations across the boundaries. The
presented framework unifies voxel-based and regional approaches, and
robustly describes the longitudinal atrophy at group level as a spatial
process governed by consistently defined regions. Our experiments showed
that the resulting regional flux analysis is able to detect the differential
atrophy patterns across populations, and leads to precise and statisti-
cally powered quantifications of the longitudinal changes in AD, even in
mild/premorbid cases.

1 Introduction

The longitudinal analysis of the brain morphology in Alzheimer’s disease(AD)
is fundamental for understanding and quantifying the dynamics of the pathol-
ogy. The analysis of time series of MR images has been based on two different
paradigms: hypothesis free and regional analysis. In the former case, the lon-
gitudinal atrophy is modeled at fine scales on the whole brain such as in the
voxel/tensor based morphometry and cortical thickness analysis [1],[2]. These
methods are useful for exploratory purposes, but usually lack robustness for a
reliable quantification of the changes at the subject level, due to the high vari-
ability of the measurements and the multiple comparison problems. On the other
hand, the regional analysis is focused on the detection of significant changes on
� Data used in preparation of this article were obtained from the Alzheimer’s Dis-
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regions which are usually identified thanks to segmentation. For instance, the
boundary shift integral identifies the longitudinal atrophy as the shift of the
segmented boundaries [3], and led to powered measure for the longitudinal hip-
pocampal changes in Alzheimer [4]. However, this kind of approaches relies on
strong a priori hypotheses on the localization of the dynamics of interest, and
might fail to detect more complex patterns of changes which are likely to underly
the evolution of the pathology. Providing a longitudinal measure which could at
the same time identify, consistently localize, and reliably quantify the longitudinal
changes is crucial for understanding the dynamics of the pathological evolution
and to provide stable measures for the clinical setting.

Non rigid registration encodes the morphological changes between pairs of
longitudinal MRIs as deformation fields. It has been employed for both whole
brain exploratory analysis and regional quantification, for instance through the
Jacobian determinant analysis. However, the regional quantification still relies
on prior segmentation, and is still sensitive to the biases, for instance for the nu-
merical derivative required for computing the Jacobian. The deformation fields
implicitly encode the spatial location of relevant atrophy processes, and novel
analysis techniques are required to consistently extract and analyze these fea-
tures. It has been proposed in [5] to parametrize the deformations by irrotational
and divergence-free components, according to the Helmholtz decomposition of
vector fields. If we assume that the atrophy can be completely described by a
change of volume, then it is completely encoded by the irrotational part, while
the divergence-free one only accounts for the tissue reorganization. Thus, the
maximal/minimal locations of the irrotational potential define the centers of ex-
panding and contracting regions, and may represent a promising measure for
morphometric studies. A different measure of volume change associated to the
deformation field is the flux across surfaces [6], which is the mathematical for-
mulation of the boundary shift. However flux-based analysis has been seldom
used in morphometric studies, due to the complexity of reliably integrate vector
normals on probabilistic segmentations of the surface boundaries.

In this study we propose the regional flux analysis, a new approach for the
study of morphological changes based on the Helmholtz decomposition of vector
fields. In Section 1 we introduce the Helmholtz theorem, and the relationship
between pressure and flux of deformations. These measure are used in Section
2 to consistently define through a hierarchical model the subspace of regions
involved in the atrophy processes . These regions are then used at the subject
level for the probabilistic flux integration. Finally, the framework is applied in
Section 3 on a large sample of longitudinal observation from the ADNI dataset
[7], to describe and quantify the pathological changes at different clinical stages,
from premorbid, to early and late Alzheimer stages.

2 Helmholtz Decomposition for Stationary Velocity
Fields

The present work is based on the registration based on stationary velocity
fields (SVF), which has been already applied for the longitudinal analysis of
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deformations [8], and for which an implementation of the log-Demons algorithm
is easily available1 [9].

Pressure Potential and Flux through a Region. The Helmholtz theorem
states that, given a vector field v defined on R

3 which vanishes when approach-
ing to infinity, it can be uniquely factored as the sum of an irrotational and a
divergence free component, v = ∇p + ∇ × A. The irrotational component ∇p
is the gradient of a scalar pressure (potential) field p. Since ∇ × ∇p = 0, the
component encodes the information concerning the volume change. On the other
hand the divergence-free component is by definition such that ∇ · ∇ × A = 0
and therefore it describes the rotational part of the velocity. Finally, the flux of
a stationary velocity field across a given surface ∂V is given by the Divergence
(or Ostrogradsky’s) theorem, and can be rewritten as

∮
∂V v ·n dS =

∫
V ∇·v dV .

Recently the Helmholtz decomposition has been introduced in the Demons reg-
istration in order to estimate incompressible deformations [10]. Here we propose
to use it on the contrary for the analysis of the compressible part, which encodes
the observed matter loss as a smooth compression/expansion process. In such a
model, the associated divergence quantifies the apparent anatomical changes as
the flux of the estimated vector field across surfaces.

Topology of Pressure Fields. Theoretically, one could partition the whole
space into critical areas of positive and negative divergence, each of them con-
taining a critical point of local maximal/minimal pressure (Figure 1). From the
divergence theorem, the flux across the boundaries of these areas is either flowing
inward or outward. The saddle points for the pressure are on the boundaries of
those regions, and identify a change in the flow.

The analysis of the critical points of a pressure map can be addressed by the
Morse-Smale theory as a topological problem, leading to a complex of regions,
boundaries, edges and vertices. Although intriguing, the application of such con-
cepts to the medical imaging is still difficult, due to the missing statistical version
of the Morse theory. In order to obtain a tractable approach to the problem, we
propose to first focus on the definition of a consistent subset of critical regions
across subjects, to robustly describe the atrophy processes at group level as a
spatial process governed by key areas. This is a first step towards a topology
definition and provides a sparse description of the deformation.

3 Flux-Based Analysis of Longitudinal Trajectories

The goal of this section is to estimate the group-wise set of critical regions,
from the locations of maximal/minimal pressure. These regions are then used to
evaluate the flux of the longitudinal deformations at the subject level.

1 http://insight-journal.org/browse/publication/644
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Fig. 1. Helmholtz decomposition of a longitudinal trajectory in Alzheimer’s disease,
and pressure potential and divergence maps associated to the irrotational component.
The divergence describes the critical areas of local expansion and contraction.

Group-Wise Pressure Potential from Longitudinal SVFs. Consider the
longitudinal observations from a group of subjects composed of baseline Ii0 and
follow-up Ii1 brain scans. For each subject i, the log-Demons non rigid regis-
tration of the pair Ii0, Ii1 estimates the longitudinal trajectory of changes as
a diffeomorphism parametrized by stationary velocity field exp(vi), such that
Ii0◦exp(vi) � Ii1. The SVF vi can then be decomposed according to the Helmholtz
theorem in order to identify the corresponding pressure map pi.

One interest in this decomposition is that the transport of each atrophy
trajectory ϕi = exp(vi) = exp(∇pi) through a subject-to-template deforma-
tion ψi can be obtained by simple scalar interpolation of the pressure field
ϕTi = exp(vTi ) = exp(∇(pi ◦ ψi)), rather than parallel transporting vector quan-
tities, ϕTi = exp(Πψi(vi)), which generally leads to computationally intensive
and potentially more unstable operations.

The pressure maps in the template space pi ◦ ψi are integral quantities, and
might differ by an arbitrary constant. However, an average pressure map can still
be consistently defined either as p = pi ◦ ψ, or as the pressure map p associated
to v = vTi = ∇(pi ◦ ψi).2

Probabilistic Estimation of Group-Wise Critical Regions. Let {xk} be
the set of critical points, maxima and minima, of p. These points define the
critical areas Tk of local expansion and contraction, i.e. of positive and negative
divergence. Then, the probability of a point x to belong to a critical region
depends on the proximity to the region Tk, and on the observed divergence. We
can express this through the Bayes rule:
2 In fact, if p′i = pi ◦ ψi + ci, with ci constant, then p = pi ◦ ψi + c leads to v = ∇p =
∇(pi ◦ ψi).
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Fig. 2. Critical points associated to the Alzheimer’s average pressure map

P (x ∈ Tk|∇ · v(x) = d) =
P (∇ · v(x) = d|x ∈ Tk)P (x ∈ Tk)

P (∇ · v(x) = d)
(1)

Since the denominator is a normalizing factor, in the following only the numer-
ator is considered. The flux of the subject specific deformations exp(vi) through
the regions Tk can be easily estimated with (1) through a hierarchical model. At
the first level, based on spatial priors for the location of the critical points, we
can estimate a group-wise confidence map for the critical regions:

– Given a set of critical points {xk}, define the spatial priors P (x ∈ Tk) =
exp((x− xk)2/(2σ2))

– Define a group-wise prior F±
i (x) for the critical areas as the group-wise

average of the binary masks of positive/negative divergence
F+
i =

{
x ∈ Ω|∇ · vTi (x) > 0

}
, and F−

i =
{
x ∈ Ω|∇ · vTi (x) < 0

}
.

– From formula (1), define the confidence maps for the critical areas P±
k (x) =

P (∇ · vTi (x) = d|x ∈ Tk)P (x ∈ Tk) = F±(x) exp((x − xk)2/(2σ2).

Finally, the group-wise confidence maps are reintroduced in (1) for the second
level analysis :

– Transport the confidence maps P±
k in the subject space to obtain P±

k,i =
P±
k ◦ ψ−1

– Apply (1) by considering P (x ∈ Tk) = P±
k,i, and F±

i ◦ψ−1
i as likelihood term.

Probabilistic Integration of the Regional Flux. The confidence maps in
the subject space can then be used as weights for the integration of the divergence
across the space Ω thanks to the Divergence theorem, to provide a measure of
the subject specific flux across the critical regions Tk. The weighted integration
of the divergence implicitly defines the critical regions in a maximum a posteriori
approach through the posterior (1), therefore automatically accounting for the
registration biases in the anatomical localization (e.g. due to the regularization).
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Fig. 3. Average regional flux for AD, MCI, healthy controls, and healthy Aβ+ and
Aβ− subgroups. E1 to E9: expanding regions. C1 to C6: contracting regions.

4 Apparent Gain and Loss of Matter in Alzheimer’s
Disease through Regional Flux Quantification

Baseline and one year follow-up brain scans of 200 healthy controls, 150 MCI, and
142 AD patients from the ADNI dataset were linearly aligned and non-rigidly
registered with the log-Demons. The pressure maps pi corresponding to the
intra-subject longitudinal trajectories exp(vi) were transported into a previously
defined anatomical reference along the subject-to-template deformations ψi.

The set of local maxima and minima for the pressure in AD has been defined
from the mean pressure map associated to the longitudinal deformations of 20
randomly selected AD patients. Of these sparse sets of points, 9 local minima
and 6 local maxima have been manually labeled to define the set {xk} of critical
points. The spatial priors Tk were defined through inflation (4 voxels neighbor-
hood) and right/left symmetry (Figure 2).

The hierarchical model of Section 3 was used for the regional probabilistic
integration of the flux for the remaining patients and the healthy controls. More-
over, the healthy population was stratified depending on the positivity to the
CSF Aβ42 marker (<192 pg/ml), and the flux analysis was performed to detect
the effect of the positivity on the atrophy progression.

Figure 3 summarizes the group-wise regional flux. As we can see, the flux
is higher for the ADs and MCIs with respect to the controls. Interestingly, the
MCIs have larger flux than the ADs in some regions, which might indicate greater
structural longitudinal changes at the early stages of the disease, or underline
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Fig. 4. LDA coefficients associated to the most discriminant critical regions for the
longitudinal atrophy of the AD and MCI groups wrt normal aging. Among these re-
gions, 6 of the 8 are common to both AD and MCI, and are indicated by the common
colors.

different aspects of the heterogeneous MCI condition. The subgroup of healthy
subject positive to the Aβ42 marker consistently show increased flux when com-
pared to the negative, which is significant for several regions, and might suggest
a possible effect of the Aβ42 marker on the future development of AD.

A power analysis based on the regional flux was performed to define the
sample size required by an hypothetical 1-year clinical trial to detect a 25%
difference of the progression of the measure with 80% power when considering the
group alone, or by comparing with normal aging [4]. The regional measurements
provided different sample size estimations3. To summarize, the lowest sample
size for the AD group was provided by the flux across C5 (hippocampus): 38
(95% CI [33,44]) by considering the AD alone, and 203 [145,307] when controlling
by normal aging. For the MCI group, the lowest sample size was given by the
region E4 (mid-temporal pole): 54 [47,63] for the group alone and 307 [192,567]
when controlled for normal aging.

Finally a linear discriminant analysis was performed to define the combina-
tion of such regions which maximises the flux differences for respectively AD
and MCI vs healthy subjects. The analysis was carried out through a 2-folds
cross-validation, with 1000 iterations (Figure 4). An additional power analysis
was performed during the cross validation, to test the effectiveness of the LDA
combination of the regional flux as a clinical measure. The average sample size
(and average 95% CI) required for the LDA score when controlling for normal
aging was 164 [106,290] for the AD group, and 277 [166,555] for the MCI.

3 Supplementary material at http://www-sop.inria.fr/members/Marco.Lorenzi/
Flux-MICCAI2012.pdf

http://www-sop.inria.fr/members/Marco.Lorenzi/Flux-MICCAI2012.pdf
http://www-sop.inria.fr/members/Marco.Lorenzi/Flux-MICCAI2012.pdf
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5 Conclusions

We proposed to decompose the longitudinal trajectories according to the Helmholtz
theorem, in order to analyze the atrophy processes through the pressure potential
map and the associated flux. This new approach studies the temporal dynamics
as a topological problem, and opens the path to new analysis methods based on
graph and complex theory. The proposed work provided precise and statistically
powered quantifications of the group-wise regional atrophy processes. Moreover
the presented method describes and compares the patterns of dynamic changes
between clinical populations, and might thus lead to potentially new anatomical
findings, such as differential atrophy trajectories at different disease stages.
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Council through the ERC Advanced Grant MedYMA.
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